A surface having parabolic sections parallel to a single coordinate axis and elliptic sections perpendicular to that axis. 抛物面一种有与单坐标轴平行的抛物截面和与该轴垂直的椭圆截面的平面。
In particular, a conjecture on complete elliptic integrals is proved to be true and improved. 特别地,作者运用此法则,证明并改进了关于完全椭圆积分的一个猜测。
Elliptic curve cryptography and bilinear pairing is employed in the agreement, the dishonest node can be detected and identified. 协商过程采用椭圆曲线密码体制和双线性对来实施,能够对不诚实节点进行检测和鉴别。
The existence of explosive solutions is obtained for a class of quasilinear elliptic equations. 得到了一类拟线性椭圆型方程爆破解的存在性。
The scalar multiplication in elliptic curves is the basic to elliptic curve cryptosystem. 快速实现椭圆曲线密码体制的一个关键问题就是椭圆曲线上点的数乘。
By using the elliptic function and conformal transformation theory, a close form solution to this problem is obtained. 运用椭圆函数和保角变换理论,获得了该问题严格的闭合解。
The NP problem is a critical problem in the elliptic curve cryptosystem. 在椭圆曲线加密体制中,NP问题是制约其应用和发展的瓶颈的核心问题。
The improved system utilizes good properties of elliptic curve cryptography system and adopts zero knowledge proof. 改进的系统利用了椭圆曲线良好的密码特性,并采用零知识证明方法。
Base on ECC ( elliptic curve cryptosystem), a new improved one-Time Password scheme is proposed. 基于椭圆曲线密码体制,提出了一种改进的一次性口令身份认证方案。
The multi-scalar multiplication with two scalars is the most time consuming operations in elliptic curve cryptography ( ECC). 在现代密码系统中使用椭圆曲线密码(ECC)最频繁的一种方法是多点乘算法。
After studying existing proxy multi-signature schemes, based on the elliptic curve, a multi-proxy multi-signature scheme was proposed. 在研究代理多重签名和椭圆曲线数字签名的基础上,提出了一种基于椭圆曲线的多重代理多重签名方案。
In this paper, we study the existence of solutions of semilinear elliptic systems with sign-changing weights. 本文主要研究了变号势的弱耦合半线性椭圆方程组的解的存在性。
Several convertible signcryption schemes with semantic security based on elliptic curve cryptosystem were proposed. 基于椭圆曲线密码体制建立了几个具有语义安全的可转换签密方案。
This paper proposes a signcryption scheme based on difficult problems of elliptic curve group. 为此,基于椭圆曲线群上的困难问题提出一个可证明安全的签密方案。
The security of the system was improved by adopting the elliptic curve zero knowledge proof in the payment protocol. 在支付协议中采用并行的椭圆曲线零知识证明,提高了系统的安全性。
The elliptic curve cryptosystem is widely used in the wireless network security for its own superiority. 椭圆曲线因其自身的优越性应用于无线网络安全中。
Design and implementation of plaintext embedding in elliptic curve cryptosystem 椭圆曲线密码系统中明文嵌入算法的设计与实现
Especially, the power attack is very severe for the security of scalar multiplication on Elliptic Curve. 本文主要研究了标量乘运算在能量攻击下的安全性和效率,旨在给出快速安全的标量乘算法。
Finite field inversion, an important module of elliptic curve cryptosystems and hyper-elliptic curve cryptosystems, is introduced. 介绍了椭圆曲线密码和超椭圆曲线密码算法中一个重要的模块&求逆模块。
In this paper, by using the fixed point theory, we obtain a new existence result of bounded positive solutions of the quasilinear elliptic equations in two-dimensional exterior domains. 运用固定点理论,获得了二维内区域中拟线性椭圆方程的有界正解的一个新的存在性结果。
The main operations of elliptic curve cryptosystem are scalar multiplication and multi-scalar multiplication for a pair of integers. 椭圆曲线密码体制最主要的运算就是椭圆曲线上的标量乘和多标量乘,在各种密码协议中起到了核心作用。
So the research of elliptic curve in this paper has an important value. 本文研究椭圆曲线密码算法,具有重要的理论意义和应用价值。
A numerical method for an anisotropic problem in an exterior elliptic domain is presented in this paper. 给出了椭圆外区域上各向异性问题的一种数值解法。
Both of their security are based on the intractability of elliptic curve discrete logarithm problem. 两种方案的安全性都是基于椭圆曲线离散对数问题的难解性。
Researches on Some Problems in Elliptic Curve Cryptography 椭圆曲线密码体制中若干问题的研究
Existence of Three Solutions for Elliptic Systems and Fourth-order Boundary Value Problem 椭圆系统和四阶边值问题三解的存在性
Based on identity and bilinear pairing on the Elliptic Curve, a new multi-signcryption scheme is proposed. 基于身份和椭圆曲线上双线性对,提出了一种新的多重签密方案。
A3G authentication protocol based-on the elliptic curve cryptosystem is presented in this article. 本文提出一种基于椭圆曲线密码体制的3G认证协议。
The present work deals with oblique derivative problems for second order quasilinear elliptic equations with parabolic degeneracy. 一类半线性椭圆方程解的存在性问题讨论了二阶拟线性退化椭圆型方程的斜微商问题。
The elliptic and parabolic arcs can be represented exactly by the CT-B é zier curve. 利用CT-Bézier曲线能精确表示椭圆与抛物线弧。