Existence and Uniqueness of Limit Cycle of a Reversible Trimolecular Reaction Model 可逆三分子反应模型的极限环存在性和唯一性
Spherically symmetric instability for a trimolecular model of the second kind 第二类三分子模型的球对称不稳定性
The circularly symmetric pattern for the third class of trimolecular model is studied in detail. 对第三类三分子模型的圆对称模式进行了详细的研究。
The self-oscillating instability in trimolecular reacting systems of the second kind is investigated in detail by making use of Hopf bifurcation theory. 应用Hopf分岔理论对第二类三分子反应系统的自振荡不稳定性进行了详细的研究。
We show numerically that in the model of trimolecular reaction under external periodic force ( the forced Brusselator) there exists the intermittent route to chaos. 用数值计算证实了在周期外力作用下的三分子反应模型(布鲁塞尔振子)中存在着走向混沌状态的阵发道路。
Systematic Anlysis of a Model for Reversible Trimolecular Reaction 可逆三分子反应模型的系统分析
As a co-receptor, CD4 mediates specific antigen presentation and initiates a series of immunological reactions by forming trimolecular complexes CD4-MHC ⅱ-TCR through its ecto-part. 作为一种共受体分子,CD4通过其胞外段与MHCⅡ、TCR相互作用,形成CD4-MHCⅡ-TCR复合物,介导特异性抗原呈递;
The period-doubling bifurcation sequences of the trimolecular model with forced oscillation term 带强迫振动项的三分子模型的倍周期分叉序列
Self-Oscillating Instability in Trimolecular Reacting Systems of the Second Kind 第二类三分子反应系统的自振荡不稳定性
SPatial-Temporal Structure of the Second Kind of Trimolecular Model 第二类三分子模型的空时结构
The Construction of Periodic Solution for a Trimolecular Reaction System 三分子反应系统的周期解构造
Relation Between the Radius of Circular System and Steady-state Dissipative Structures of Trimolecular Reaction Chain 三分子反应链的稳恒态耗散结构与圆域半径的关系
Asymptotic solution of limit cycle in a trimolecular reaction system 一个三分子反应系统的极限环的渐近解
A few problems about trimolecular reaction 三分子反应的有关问题
The Global Construction of a Trimolecular Reaction Equation 一个三分子反应方程的全局结构
In this paper we study bifurcation of steady-state solutions of the trimolecular model in a two-dimensional unbounded region. By using the implicit function theorem and the Liapunov-Schmidt procedure we prove the existence of the steady-state bifurcation solutions which are periodic in x. 本文应用隐函数定理及Liapunov-Schmidt过程,讨论了二维无界区域中三分子模型的分歧问题,证明了在临界参数值附近定态分歧解的存在性,而这些分歧解关于x是周期的。
Dynamic Behavior of Trimolecular Reaction in One Dimension Medium 三分子反应在&维介质上的动力学行为
This paper studies the qualitative property of trimolecular response model with repeated saturated exportation, having proved the boundness of solutions and gets parameter range in which system ( 1) exists the limit cycle, it also obtains Hopf bifurcation surface equation. 本文研究具有多重饱和输出的三分子反应模型的定性性质,证明了系统(1)解的有界性,得到其存在极限环的参数范围,并获得Hopf分支曲面方程。
Using the Theory of Collision and Activated-energy and Transition state illustrates the reason of seldom-seen of trimolecular reaction. And the paper expatiates on function process of trimolecular reaction and enumerates parts of trimolecular reaction and it proves the existing of trimolecular reaction. 用碰撞理论、活化能和过渡状态理论说明了三分子反应很少见的原因,并阐述了三分子反应的作用过程,列举了部分三分子反应,说明存在三分子反应。